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Central Limit Theorems in the Area of Large

Deviations for Some Dependent Random Variables

by

Narasinga Rao Chaganty and J. Sethurman

Abstract
.(n) .. x(n))

A triangular array of dependent random variables (XI 1 """

whose joint distribution is given by dQn(3) - zlexp[-Hn ]ndP~x,),

where x - (xi, ..., xn) ian, z. is the normalizing constant and

P is a probability measure an IR has been used to describe the distri-

bution of magnetic spins in a body. Let S X . ... (n)be the
n 1

tctal magnetism present in the body. For certain forms of the func-

tion H, Ellis and Newman (Z. Whrscheinlichkeistheorie wrd Very.

Gebiete 44 (1978) 117-139) and Jong-Woo Jeon and Sethuraman (INS Dulle-

tin (1978) Abstract #165-116) showed that under appropriate conditions

on P, there exists an integer r z 1 such that S inl converges

in distribution to a random variable which is Gaussian for r a I and

non-Gaussian for r a 2. In this paper utilizing the large deviation

local limit theorems for arbitrary sequences of random variables of

Chagenty and Sethuramen (Dept. of Stat., FSU, Tech. Report 14630) we

obtain similar central limit theorems for a wider class of fAnctions

H., thus generalizing the results of the previous authors. Accession FoNTIS CRA&I
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1. Introduction

_ -In this paper we obtain central limit theorem for some depen-

dent random variables which are used to describe the distribution

of magnetic spins present in a ferromagnet crystal. A ferromagnet

crystal consists of a large number of sites. At site i there is

some smmit of magnetic spin present, will be denoted by

n) , a Is ..., n, where n is a positive inn > The magnetic

spin present at any site interacts with the magnetic spins at its

neighboring sites and hence gives rise to some dependency among -4'r ...

the X(U')s. In the Ising model, the joint distribution, at a fixed

tempierature T 31 0, of the spin random variables (Xn) ... , Xf)

* is given by

lexp[ jj 1 dP(xj)

where x a (X1  ... , x.) M and P is a probability measure on IR

with mean 0 and variance 1. The function Hn(_) is known as the

Hamiltonian and it represents the energy of the crystal at the can-

figuration x., zn is the normalizing constant which is also known as

the partition function. In many cases explicit evaluation of to

is very difficult and physicists usually try to evaluate the limiting

free spin per state .), at the temperature T, as defined below:

.(T -im lot Z (1.2)

V-
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For sow particular types of Hamitonims it was shown by

physicists that there exists a temperature level Tc such that the

function #(T) is infinite or finite according as T < T or T 2 T

(see Kac (1968)). T is the critical temperature at which a phase

transition occurs. As pointed out by Ellis and Newman (1978) the

existence of the critical temperature can be demonstrated in yet

another way. For T ) T the model shows that there is a weak depen-

dence aiong the random variables (Xn), ... , Xn )) and a standard

central limit theorem is valid for SHi. However for T a Tc, there

exists a 6 e (1, 2) such that Sn/na/2 converses to a non-Gaussian

limit and for T < T due to the strong dependence of the X(n) s,
ci

the random variables tend to cluster in several ergodic components.

One can show that the central limit theorem is valid on each of the

components. This is the approach that we take in this paper. In

Section 2, we consider a special case for the Hamiltonian by setting
it to be equal to - - ZE xx,. This is known as the Curie-Weiss model.

2n ii
The asymptotic distribution of Sn for this model when P is symmetric

Bernoulli is obtained by Simon and Griffiths (1973). In a two paper

series, Ellis and Newman (1977, 1978) extended Theorem 2.1 of Simon

and Griffiths to the class of probability measures L0, defined in

2.2, and subsequently to the class L, defined in 2.4. These exten-

sions are stated in Theorems 2.3 and 2.8. Recently Jong-Woo Jean

(1979) in his Ph.D. dissertation gave a simpler and statistically
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motivated proof of Theorem 2.8 and used the technique to obtain

similar limit theorems for a wider class of Hlamiltonians. Hils

results as well as the results of the previous authors are stated

precisely in Section 2. The goal of this paper is to extend

Theorem 2.11 of Jong-Woo Jeon (1979) further for a larger class

of Hamiltonians. Our main result, Theorem 3.4, is stated in

Section 3. The proof of Theorem 3.4 rests on recent large devia-

tion local limit theorems of Chaganty and Sethuraman (1982). We

also state these results, Theorems 3.1 and 3.2, in Section 3.

We now briefly give our reasons for calling theorems on

the asymptotic distribution of Sn under %, defined in (1;1), as

limit theorems in the area of large deviations. A standard tech-

nique in statistics literature is to first obtain the asymptotic

distribution of S under P , where
nn

n

an i dP~xj) (1.3)

and then use contiguity arguments, as in LeCam (1960) to obtain

the asymptotic distribution under Qn. This technique breaks down

completely in this case. For the various models considered in

Physics which are described in greater detail in Sections 2 and 3.

converges to - in probability under Pa and thus contiguity arguments



• !are not applicable here. tinder Pn' Sn/u has a limiting normal

distribution. Also, under P n , IL n(V I is small in the area of
ordinary deviations of Sn , that is, when Sn /09 is finite, while

it is large otherwise. Thus from the point of view of Pn' we are

looking for the asymptotic distribution of S,, when P. is modified

by Ln( , which is substantially different from I in the area of

large deviations of Sn . This view point helps in a statistically

motivated proof of the asymptotic distribution of S under % and

describes the background behind the title of this paper. One should

also note that the normalizing factor on Sn in its asymptotic

distribution under Qn is different from the corresponding factor

under Pn"

"1

i

I
1
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2. A Brief Sumry of Curie-Weiss Model and Its Extensions.

In a ferromagnetic system with only isotropic pair inter-

actions and with no external magnetic field, the form of the
Hamiltonian, H., may be taken as H .. , I) a • x

where aij k 0. If it is assumed further that aij - for all

i and J, that is to say that each spin interacts equally with
1

every other spin with strength 1 and P is taken to be symmetric
1

Bernoulli, i.e., P(-l) = P(l) * -, one obtains the Curie-Weiss

model. Replacing P by PT(x) - P(xrf), we get

dQn(x) a exp[s /2n] fdP(x.), where sn - x + ... xn .  (2.1)

This model has the advantage, that the limiting free spin

per site can be solved exactly. The existence of the critical tem-

perature and phase transition for this model was demonstrated by

Kac(1968) and the asymptotic distribution for the total magnetism,

Sn, for this model was obtained by Simon and Griffiths (1973) which

is contained in Theorem 2.1.

Theorem 2.1. (Simon and Griffiths). Let X j = 1, ... , n, be

a triangular array of random variables whose joint distribution is

given by (2.1) and P be symmetric Bernoulli. Then Sn /n 3 / 4 converges

in distribution to a random variable whose density function is pro-

portional to exp(-y 4/12).

Theorem 2.1 was extended to the class of probability measures

LO which is defined below, by Ellis and Newman (1977).
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Definition 2.2. Let L0 be the class of symmetric probability mea-

sures P on Bt such that

J exp(x 2/2)dP(x) ( - (2.2)

and

2
*(t) - fetdP(x) < e /2 for t 0 0. (2.3)

Let *(t) a log#(t) be the cumulant generating finction of P.

Since P is symmetric, the Taylor series expansion of *(t) about the

origin consists of even powers of t,

- Yc2st2 /(2s)t, (2.4)
S=1

where c2s is the 2sth cumulant of P and the series converges in

a neighborhood of the origin. Let the index r be defined as

I if c2 =
rZ = (2.5)

minis > 1: c2s O* if 2  1.

Zt is easily verified that the symmetric Bernoulli belongs to

the class L0 with the corresponding value of r equal to 2. Thus

the following theorem due to Ellis and Newman (1977) extends Theorem

2.1 to a larger class of probability measures. Let Yr, r a 1, be

a sequence of random variables with density function p r (y), where



d rap[-c2, y /(2r) I if r a 2(

PrCy) 1N(O, (1 - c2)/c2) if r 1.

and d is the noTmalitzing Constant.

Theorem 2.3. (Ellis and Newman). Let P L0 and the index r be do-

fined by (2.S). Let X n) , j , ..., n, be a triangular array of

random variables with joint distribution given by (2.1). Then

S dSn d (2.7)

Ellis and Neeman (1978) further extended Theorem 2.3 to a bigger

class of probability measures L than LO by removing the assumption

of symetry and Condition (2.3). The class L is defined below.

Definition 2.4. Let L be the class of probability measures P on IR

such that

Jexp(x 2 /2) d (x) < . (2.8)

Fix P e L. Let (t) be the c.g.f. of P and set the function

G(t) - t 2/2 - 0(t), for t e R.

Definition 2.S. A real number m is said to be a global minium= for

G if G(t) z G(m) for all t.

Definition 2.6. A global mininin m for G is said to be of te r

if

G(t~m) - G(m) a c2rt 2r/(2r)I o(Itl 2r) as t .0, (2.9)

.. ... .. ...i*I II I I II" .. ... $
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where c 2r  G (  (M) is strictly positive.

Definition 2.7. A probability measure P is said to be pure if G has

a unique global minimum.

With these definitions we are now in a position to state further

generalization of Theorem 2.3 also due to Ellis and Newman (1978).

Theorem 2.8. (Ellis and Newman). Let P e L be pure and m be the
I: ..(n)

unique global minimum of type r. LetX ,j = I, ... , n, be a trian-

gular array of random variables with joint distribution given by (2.1).

Le X(n)# . X(n) .- Then
n 1

S - n d
r-  9_. (2.10)

n

where Yr is defined by (2.6).

An alternate proof of the above theorem was given by Jong-Woo

Jeon (1979). Using the technique of this new proof he was able to

obtain similar limit theorems for a wider class of Hamiltonians. We

present his results after making a few observations. Note that the

moment generating function 3(t) of the standard normal is given by

M(t) et2/2. Then we can write (2.1) as

d Q ( ) -I n n 1 * ~ * X * ( . 1
dnCX_. Zn [M( sn/n)] nldP(xj), where s x +

One might ask the question whether it is possible to obtain limit

theorems of the type (2.10) when m is replaced by the moment generating

function u of a random variable U, not necessarily standard normal.

This is precisely the question that was raised and answered in the

affirmative by Jong-Woo Jeon (1979).
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Fix a random variable U with E(U) 0 0 and whose m.g.f. *u

is finite in a neighborhood of the origin. Assume that the density

function of U is bounded. Let yu(s) = stp(st - log u(t)J be

the large deviation rate of U. For a probability measure P, let

Gu(s) y(s) - *(s), where *(s) - log feSXdP(x). (2.12)

Definition 2.9. Let L be the class of probability measures P suchu

that

fe-Gu(S)dsc (2.13)

and

u(S) dP(s) <-. (2.14)

Definition 2.10. A global minimum m for Gu is said to be of Type

r if

Gu(s- Gu(m) = c2rs2r/(2r)l * o(Is 2r), as IsI _ 0. (2.15)

where cr G( 2r)(M) N 0.whr 2r u

The following Theorem 2.11 generalizes Theorem 2.8 to a larger

class of Hamiltonians.

Theorem 2.11. (Jong-Woo Jeon). Let P e Lu and X(n). 1 J •, ... n

be a triangular array of random variables with joint distribution

given by

dqn(D * , n /n d(xj), (2.16)

fl U( n)DPx)
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where x (xi. ... , x) . s n ax I * ... x n and z, is the normalizing

constant. Assume that G has the unique global minimum of type r

at the origin. Then

Sn d (2.17)
n 1-i ro

where Yr is defined by (2.6).

3. Further Extensions of the Curie-Weiss Model.

In this section we propose to extend further Theorem 2.11 by

enlarging the class of Hamiltonians as well as the class of probability

measures L . The large deviation local limit theorems for arbitrary

sequence Tni n Z 1, of random variables of Chaganty and Sethuraman

j (1982) are the key tools which make this extension of Theorem 2.11

possible. The Hamiltonian,Hn, in our generalized model (3.7) is

taken to be the cumulant generating function of these random variables

Tn . We state the main Theorem 3.4 after presenting the large devia-
n

tion local limit theorems 3.1 and 3.2.

Let (Tn , n Z 1) be a sequence of non-lattice random variables

with c.f. 4 n(z) which is analytic and non-vanishing for z in

fl { {z: JReal(z)J c a) with a > 0. Let I a (-a,a) and I =(-a,, a1 ),

where 0 < a < a. Let

) . log 4n(Z) for z E € and (3.1)

yn(U) = UP[SU- *n(U)]. (3.2)
SCI
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122

Assume that E(Tn)/n m and Var(Tn)/n = a2 , vnu 1. Let

{m ) be a sequence of real numbers converging to m as n . such
n

that nImn - ml ' 1, for 0 < 6 ' 1. Let G (t) - *nCT)+it a -(n it),
n,T fl nlr')

for T C I The following theorem, which provides an asymptotic ex-

pansion for the density function k. of Tn/n in terms of the large

deviation rate Yn is due to Chaganty and Sethuraman (1982).

Theorem 3.1. Assume the following conditions for T:

(A). There exists B , 0 such that I1 n(z)< B V z f. z c a 1.

(B). There exists a 1 0 and c I1 such that *n( r m and
11 1 n n n

(T n) , e Ii, Yn>n n
(C). There exists n > 0 such that for any 0 < 6 < n,

inf Real(Gn (t)) = min[Real(Gn(6)), Real(Gn(.6))], v n z 1,

ItI6 ,

where Gn (t) Tn(t).

(D). There exists p, I > 0 such that

* it)/,n(W)lI / n a o(n p) V T C I.

Then

k n[(m o) 1 (Imn - ml)]. (3.3)n n

We have the following analogous theorem for lattice valued

random variables.

Theorem 3.2. Let Tn take values in the set fan+khn: k=O,±lt2, ... ).

Let (mn a (an*k h )/n) be a sequence of real numbers, where (k.)

is a sequence of integers. Assume that Conditions (A), (B) of Theorem
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3.1 hold. Replace Conditions (C), (D) by the following:

(C'). There exists n > 0 such that for any 0 < <,

inf Real(Gn(t)) = min[Real(G(6)), Real(G(-d))]. 9 n a 1.

(D'). There exists p, I > 0 such that

. / njJl #n ( it)/ . n ) l = 0 (np) v T e I.

-Whn

Then

/- T -ny(mn) Oim- )J- ) [I + 0(Imn ml)]. (3.4)

We now proceed with some notation needed to state the main

Theorem 3.4 of this section. Fix a sequence of random variables Tn j

n 2 1, satisfying the conditions of Theorem 3.1. Let * n yn be as

defined In (3.1) and (3.2). For a probability measure P on m, let

h(u) be the c.g.f. of P and Gn(u) = Yn(u) - h(u). The function G

plays the same role as the function G of Section 2.

Definition 3.3. Let Lt be the class of all probability measures

P on IR such that the following two conditions hold:

( u ) dP(u) < n k I and (3.S)

there exists p, A > 0 such that

I e'I'nu)d 0(nP). (3.6)

I
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Let Y; r 1 be a sequence of random variables with p.d.f.

given by dr e[ry 2 r/(h ,, (,)) 2 r(2r)t] if r a 2 and

N(O, h" (m)(h" (m) + c2)/c 2 ) if r a 1, where C2r is a constant and

d ris the normalizing factor. The following theorem is the main re-

sult of this section.
is th noralizng fctor Th folwn theor e a te anlr-

Theorem 3.4. Let P e Lt. Let XN, 1, ... , n, be a triangular

array of random variables with joint distribution given by

-I 
n

dZC(_ a Z n #nsn /n) 11 dP(xj). (3.7)
jul

Assume that Gn's have a unique global minimum of type r at the

point mn and G (2 r) (n) .c 2 r as n .-. Then

S n - nTn d y*. 
(3.8)n -irL  r

n

Remark 3.5. The distribution function Qnc) is well defined because

Zn I fn (sn/n) dP(x)
mn

- I enn(sn/n) RdP(xp)

.4

- I

e' " UP (Y [since % is convex]

- e*'n(x)dP(x) - [by (3.S)].



The proof of the above theorem Is postpmed until the end

of Lena 3.10. Let

g(y) " exp [-y 2r/(2')Ij (3.9)

and

r SW k (a. 7 n ,''Y) e n " n' )%',] (3.10)

where kn is the p.d.f. of T/n, n 2! 1. We will need the followkng

lemas in the proof of Theoriem 3.4. Lemn 3.6 shows that Sny)

converges to g(y) as n . ,0 for each y. Lemmas 3.7, 3.8, 3.9 and

3.10 show that

g nO)') 8(ysr) as a .-

Lema3.6 Let G( 2r) = C . If G has a unique global mini-

mnu of type r at the point % and C2r,n -.c2r as n then

.n(y) gs (y), as n - -. (3.11)

Proof. Fix y c R. By Theorem 3.1 we have as n . -,

gn.y o,,2w T knC" , y) en [hC'nnA' y)+(an)

-°[hC Vn'a- C"I'-ay. (+' y) T oI.' -I
g( y) [G C #n-'sy)-€n) ( [y. I ( ]

**3GO04'r)G n [140 (I %,flhvyUj)]

* e 2rn (2r) I Cy2'/n) ] 1c n-Wy.=l]1



The leaiIs nov imediate taking limis as n .
The following Lean 3.7 is crucial to the proof of the Lemas

3.8.

lma3.7. Lot 0 O 6 4 1w. Suppose that G.'s have unique global
mnimm of type r at the point n then there exists N such that

2r
n[Gn (an.n' y)- !" 2r V f N. (3.12)

2(2r)I

uni formly for Jy c n .

Proof. Let 0 t € c2r/2. Since c2r,n converges to C2r we can

find N1 such that c2r,n 2 C2 r/2 + c Vn kN,. Also since

-G2(%C..-)-G ,-) - C .n ~(2r)r •oI.+ 2r) asu.*

uniformly in n, we can find n ' 0 such that for Jul t n we have

G u 2ruc - (u2a)-
n(a (2r) I T7rf"

Fix N2 such that n "  q V a a N2 . Then N a s ax(Ni. N2) does

the job because for n t N and I)I c n6 we have lyZ?/nl 4 n. There-
1fore

Ar y 2 2r.n 2r

y2r
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V n aNuniformly for lhi cU a This completes tOe proof of the

* l6=a.
I- . II

Lema 3.8. Let 0 < 6 < r. Let g and gn be as defined by (3.9)

ad (3.10). Suppose that % has a unique global minii of type

r at the point m then

I s(Y) f g(y)dy a -. (3.13)

Proof. For hyi I n8 , note that nU'y converges to zero uniformly

in y. Therefore from Theorem 3.1 we get as n -9.

-,(a,,,'Sry). 1 ('6'n +nC 5' )[l+0lj%*n'hry--j) (3.14)

Thus

I c) -o 7 ! e (" ' X)%C"lknC hr')dy(3";s)
g3 (Y)dY g.'2 17n en[I(%* 'rY)+%Gu n k (ii 'n U- d( 3

-nls'  l Gn l ,# hry-G

I-I

A ) (y) dy.

Iln

where

An ( ) "+(Iy l ]

It
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and I is the indicator function. It follows from Lemma 3.7 that

I ,()l is bounded by an integrable function. We can now conclude

from Lema 3.6 and Lebesgue dominated convergence theorem that

n (Y)dy * fg(y)dy as n . (3.16)

The proof is now complete. II
The following Leuma 3.9 is needed to prove the next Lena

3.10.

Lemma 3.9. Let {Tn, n > 1) be a sequence of random variables

satisfying the conditions of Theorem 5.1. Then

enyn(nn*Ylkn(mnny) - 0(np* 1 ) V Y, a n..+ (3.17)

Proof . Let y a land ,y be such that

Yn (a.y) (mnY)Ty - *n(ty)"

A simple application of the inversion formula applied to k n  yields

n-n 7 *n[#.(.r *t- r)inm*Ifn(n~y)k(m +Y)IY')*(c)'nm~~d

n 7 t ( it) 1l/n p.1
t dtu~ a. OI

Lemma3.10. Let 0 -c a ijr. Suppose that Gn has a unique global

minimum at the point % and let gn be as defined by (3.10) then

I g(Y)dy 0 u n... (3.18)

I y),n 6
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Proof* By (3. 10) we have

gn(Y) dy

n~ [h (m +lU -"+G(

e Uzj n n k. (ann .y) dy

U- ym n Cm nf y k n C.n"y~y

Substituting y' n a y, we get

f 6 j ()d

1n[ (mn~y)

-(n-t)[G (U .y)-G (an)]-[G( yG
~O(n n na n nn " f dy.

The last inequality follows from Lema 3.9. Thus we get from

Condition (3.6)

Iyd So (q) (n- Q [G3 (an.y) Gn(g)

o~nqe- n-t Lnwhere q *2P4I(l4)
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and

m im [G(.+y)-(nhn)

* min[G , - ( - [G(-{6-h .)-G (a

C2 n 2r(6-'r) , 2r(a"V

sincea i s the unique global minim=. of G and c0 . Hence

IJ [ &, y)d(l ocq )e1

which goes to 0 since 0 <6 < jr and the proof is complete. fl

Going back to the proof of Theorem 3.4 we first express dQn

defined in (3.7) as follows:

dQ.) - zn#n(Sn/n)IdP(xj)
n ys

-n I e3 nk()dyndP(xj)

% n 1" e n n)(n n-1,;y)d€dP(xj)

- - 9
ex %* n y) -h (%+n ~ x

X 0 k -iry) d

n

fI IM. (xj)f(y)dy. (3.19)
Jul
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where

dlyCxj) a xe dP(xj 1  (3.20)

and

n(Y) u z In Are nhmn+-,r)k,(m +ny). (3.21)
n n fn

Since Id%(V a I and fdx%,y(x j ) = 1 for each y and j we have

If (y)dy a 1. Thus we can introduce random variables V with p.d.f.

f and the representation (3.19) of dQ ) shows that Xj

j a 1 , n, are i.i.d. dM- (x) given Vn - y. We now proceed and

obtain the limiting distribution of (Sn-n n)/nl"irunder dln,yCx).

Consider,
1- r

log EM  
e

n[- - * h + [--y . hn-Vy.

n tn t2  "r "
n[ . ' + h, Cn-&Py+) t + t2 h"Cn1r -n) o~n- 1]

t-1t -21/ ___

t h'(m )t h"Cm )' t2  -1

n I.%r - W n- 2n2-1/r n

S ()t .o)j.
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sinc.G(m~an mnd therefore (m)h'()= n Thus

flu ~ nfl

[I&Sn L- h"(m) ty if r > 1 (3.22)

logE e f -

S 2

This shows that the limiting distribution of (S n-ntn)/n given

Vn  y is degenerate at h"(m)y if r > I and N(h"(m)y, h"(m)) if

r =1.

Next we note that

gKy)

fg,(y)dy

where gn(y) is as defined in (3.10). By Lemmas (3.6), (3.8) and

(3.10) it follows that

f_(y) f(y) a IQ s n , (3.23)n fg(y) dy

where

-Y2r /(2r)I

g(y) - e

The proof of the theorem is completed applying Theorem 3.12 of

Sethuraman to (3.22) and (3.23). II
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Remark 3.11. When T is the sum of n i.i.d. random variables

distributed as U with m.g.f. ( An ) becomes 4n(s /n) and

the class of probability measures L reduces to the class Lu .t

Thus Theorem 3.4 generalizes Theorem 2.11 to a larger class of

Hamiltonians and probability measures.

We now state the theorem of Sethuraman (1961) which was cru-

cially used to obtain the limiting marginal distribution of

(Sn-nn)/n 15, in the proof of Theorem 3.4.

Theorem 3.12 (Sethurammn). Let A be a sequence of probabilityn

measures on V x W, where V and W are topological spaces. Let un
be the marginal probability measure of A on V and v (v, .) be

n ni

the conditional probability measure on W. Suppose that Un con-

verges to a probability measure u for every measurable set in V

and for almost all v with respect to u, vn(v, -) converges weakly

to v(v, -). Then In converps weakly to A, where

X A x B) a f v(v, 9)di (v) (3.24)
A

for every measurable rectangular set A x B.

|4
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